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Abstract

We present a case study of a cloud-based computational workflow for processing large astronomical data sets from
the Murchison Widefield Array (MWA) cosmology experiment. Cloud computing is well-suited to large-scale, episodic
computation because it offers extreme scalability in a pay-for-use model. This facilitates fast turnaround times for testing
computationally expensive analysis techniques. We describe how we have used the Amazon Web Services (AWS) cloud
platform to efficiently and economically test and implement our data analysis pipeline. We discuss the challenges of
working with the AWS spot market, which reduces costs at the expense of longer processing turnaround times, and we
explore this tradeoff with a Monte Carlo simulation.
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1. Introduction

The formation of the first stars and galaxies, and their
later acceleration due to dark energy, can be probed by
measuring the large-scale distribution of neutral hydrogen
at high redshift (for reviews see Morales and Wyithe [17]
and Liu and Shaw [14]). Several arrays have been devel-
oped to measure the power spectrum of this cosmologi-
cal signal, including the Low Frequency Array1 (LOFAR;
[23]), the Donald C. Backer Precision Array for Probing
the Epoch of Reionization2 (PAPER; [18]), the Murchison
Widefield Array3 (MWA; [22]), and the Hydrogen Epoch
of Reionization Array4 (HERA; [3]). The hundreds of an-
tennas and thousands of channels which give the needed
sensitivity and redshift span generate a significant amount
of data. For example, the MWA has generated a 28 PB
data archive since it commenced in 2013.

Data analysis follows a traditional calibration and imag-
ing approach, a compute intensive operation which is not
trivially parallelizable. Analysis is further complicated by
the need to distinguish foregrounds from the faint spec-
tral signature of the cosmological background. This chal-
lenge emerges as a need to control for systematic error
throughout the experiment and analysis to one part in
100,000; custom analysis codes are required to control for
systematics in calibration, synthesis imaging, and error
propagation. To date, all limits on the cosmological power
spectrum have been limited by systematic biases that de-
grade measurement precision. These systematic floors are

1http://www.lofar.org
2http://eor.berkeley.edu
3http://www.mwatelescope.org
4https://reionization.org

reached after processing hours or days of data. Each anal-
ysis iteration results in better identification of systematics
and allows integration of more data for a deeper measure-
ment. The iteration cycle is improved by testing on large
amounts of data.

Recently, cloud computing has emerged as an alterna-
tive to traditional computing clusters for high-performance
academic research computing, particularly of large astro-
nomical data sets. Dodson et al. [4] describes using the
Amazon Web Services (AWS) cloud computing service to
analyze the CHILES dataset, an example of paralleliza-
tion used to process repeated measurements. Sabater et al.
[20] similarly calibrates LOFAR data with AWS. A related
analysis, though not of radio astronomy data, was reported
by Warren et al. [25], which describes processing satellite
images in the cloud.

Cloud computing is particularly well-suited to episodic
computation, where users require short periods of high
computational throughput interspersed with periods of low
usage. Dedicated clusters or small shared clusters can be
expensive to maintain during periods of minimal usage and
limited in their scalability during periods of heavy compu-
tation. The development of analysis techniques for radio
cosmology measurements requires highly episodic compu-
tation as we identify systematics and test new analysis
approaches on large data sets. The speed of this develop-
ment cycle is limited by the testing turnaround time.

Here we discuss how we have used cloud computing to
routinely test analyses of data from the Murchison Wide-
field Array (MWA). We have used AWS to execute jobs
in hundreds of parallel nodes, performing calibration, syn-
thesis imaging, mosaicing, and power spectrum analysis on
hundreds of TB of data. We describe our cloud pipeline
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and report finding on its efficiency, cost, and failure modes.
We note that while the spot market mitigates costs, it ex-
tends testing turnaround times. To better understand this
tradeoff we present a simple model that simulates the im-
pact of the spot market on a typical analysis run. The
simulation indicates that improvements in checkpointing
and restart automation would offer faster overall execu-
tion time while retaining the spot market’s cost savings.

2. Background on Cloud Computing with AWS

While a number of cloud computing platforms exist
(Microsoft Azure, Google Cloud, etc.), this paper focuses
on a workflow developed with AWS. We primarily use two
AWS tools: Elastic Compute Cloud (EC2) for computa-
tion and Simple Storage Service (S3) for data storage. In
this section we describe the basic functionality of these
tools and define terminology used throughout the paper.

2.1. EC2

Cloud applications are run on instances that are started
and stopped on command; costs are calculated in “instance-
hours” and are incurred only from operating instances.
This pay-for-use model is one of the primary advantages
of cloud computing. AWS offers many instance types op-
timized for computation, memory, and storage. Instances
are based on virtual central processing units (vCPUs),
graphics processing units (GPUs), or both. The instance
price, in dollars per instance-hour, reflects the size and
capabilities of the instance. EC2 operates across 22 geo-
graphical regions that are further subdivided into 69 avail-
ability zones. Instance availability varies across regions.

EC2 instances are pre-configured with Amazon Ma-
chine Images (AMIs). While AWS provides templated
AMIs, users can also build and save their own AMIs to
produce customized instance environments. EC2 instances
support many Linux and Windows operating systems.

Instances belong to one of two pricing models. On-
demand instances have a fixed price that is consistent
across regions. AWS service outages can, in rare cases,
limit on-demand instance availability, but in general on-
demand instances are available when requested and termi-
nated by the user.

A cheaper, but less reliable, alternative to on-demand
instances are spot instances. These typically cost a frac-
tion of the on-demand price with the trade-off that they
can be terminated by AWS at any time. The spot price
operates as a market rate for a given instance type and
increases during periods of high demand. If demand in-
creases while the instance is running, AWS may terminate
spot instances to increase capacity for the more expensive
on-demand instance requests. Users can supply a maxi-
mum spot price when requesting spot instances. The in-
stances will be terminated if the spot price exceeds this
maximum price.

AWS overhauled its spot pricing system in 2018.5 Pre-
viously, spot instances were allocated based on a bidding
system. Instance requests were fulfilled to the highest bids
and the spot price was set to the highest unfulfilled bid. In
2018, in response to volatile spot pricing, AWS decoupled
spot instance allocation from spot pricing. As a result,
spot pricing is much more stable but is no longer a proxy
for instance availability.

2.2. S3

The Simple Storage Service, or S3, is the most popu-
lar AWS system for persistent data storage and manage-
ment. S3 is an object storage service rather than a file
storage system. The top-level storage container is called
a “bucket.” Buckets can be further subdivided by folders.
S3 bucket access is customizable to support fully public,
fully private, or read-only access.

S3 storage has different classes with varying features
and pricing. Two of the commonly used classes are S3
Standard and S3 Glacier. The Glacier class has a cost
structure designed for long-term, low use, storage. It there-
fore has lower monthly storage costs but higher download
costs, longer recall times, and deletion penalties if data are
stored for less than a 90-day minimum storage duration.

2.3. Interfacing

There are a number of avenues for users to interact
with AWS services. AWS provides a browser-based con-
sole6 that allows users to review and manage cloud ser-
vices. Command-line tools, such as the AWS command-
line interface (CLI) package7, enable users to download
from or upload to S3 buckets. Users can access EC2 in-
stances from the command line with SSH. Many users also
use Application Programming Interfaces (APIs), such as
boto,8 to interact with AWS cloud services.

3. Data Processing

We describe processing data from the MWA radio ob-
servatory. The MWA is an array of 128 stations, each
comprising a grid of 16 dipole antennas phased to form
a steerable 15 degree field-of-view. The interferometric
output is a measure of the correlation between all pairs
of stations, or baselines, as a function of frequency, po-
larization, and time. Data volumes therefore scale as the
number of independent baselines, or N(N + 1)/2 where N
denotes the number of stations, meaning that larger ar-
rays produce substantially larger data volumes. Data are
recorded continuously, integrated at a 2-second cadence,
and divided into 2-minute observation files. The length of

5https://aws.amazon.com/blogs/compute/

new-amazon-ec2-spot-pricing/
6https://aws.amazon.com/console/
7https://github.com/aws/aws-cli
8https://github.com/boto/boto3
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the 2-minute observations is chosen to be small compared
to the amount of apparent sky rotation, enabling each ob-
servation to be imaged as stationary snapshots of the sky.
Since first light in 2013, the MWA has recorded some 1.7
million of these files, amounting to 2 PB of data, from its
cosmology program alone.

Data processing consists of two steps. First, corre-
lated measurements, or visibilities, are gridded and Fourier
transformed to produce an image of the sky at each time,
frequency, and polarization. During this step, the 2-minute
observation files can be processed independently in paral-
lel. Second, repeated observations of the sky location are
combined producing an “image cube” with two spatial axes
and a frequency axis. We then estimate the cosmological
power spectrum by Fourier transforming each axis of this
cube and integrating in spherical shells.

Several pipelines have been developed to perform data
analysis and power spectrum estimation. The U.S. team’s
analysis pipeline, described in depth by Barry et al. [1],
calibrates and images the data with the Fast Holographic
Deconvolution (FHD) software package9 [21] and perform
precision power spectrum analysis with εPPSILON10 [8].
The packages are open-source and written in the IDL pro-
gramming language. Challenges addressed by this pipeline
include precision imaging of diffuse structure, accounting
for polarization with detailed instrument models, calibra-
tion of low level instrumental artifacts, and mitigation of
gridding artifacts.

In Figures 1 we describe the processing of a single 2-
minute observation with FHD in the cloud with AWS EC2.
We use m5.4xlarge instances, which have 16 vCPUs and
64 GB of RAM, and we parallelize the job across all 16
vCPUs. FHD is a versatile software package; here we de-
scribe a particularly computationally-intensive processing
run that includes calibration to the GLEAM catalog [7],
is fully Stokes polarized, and iteratively deconvolves com-
pact foreground sources [21]. Computational challenges in-
clude the initial calculation of model visibilities for 50,000
sources, a task which scales linearly with sources, and the
inclusion of full Stokes polarization modeling which mod-
els the correlation between all four polarization compo-
nents requiring eight times the usual resources required
by the usual analysis which neglects polarization. Figure
1a shows CPU usage, Figure 1b shows RAM usage, and
Figure 1c shows the IOPS (disk reads and writes) for a job
of this processing style.

On average, processing a single 2-minute observation
in this way takes 633 minutes. At the time of writing,
on-demand m5.4xlarge instances cost $0.768 per instance-
hour in the Virginia region, amounting to a total process-
ing cost of $8.10 per observation. Using spot instances re-
duces that cost to $0.432 per instance-hour for the ‘a’ avail-
ability zone, with spot pricing varying by up to $0.1251
across availability zones. Processing an observation with a

9https://github.com/EoRImaging/FHD
10https://github.com/EoRImaging/eppsilon

Figure 1: Statistics from processing a 2-minute observation from the
MWA with FHD. We used FHD’s fully-polarized “4-pol” mode and
implemented point source deconvolution. Processing was performed
with an m5.4xlarge AWS instance. (a) gives the maximum CPU
usage during one-minute time intervals throughout the run. (b) de-
picts the RAM usage, with the dotted black line representing the
64 GB RAM capacity of the m5.4xlarge instances. (c) gives the
Input/Output Operations Per Second (IOPS).
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spot instances that does not experience spot termination
costs about $4.56. Using spot instances can save nearly
half the cost over on-demand instances.11

In §4 we describe in detail the cloud workflow we de-
veloped to efficiently process many observations in parallel
using virtual computing clusters.

4. The AWS Cloud Workflow

In this section we present the cloud-based data process-
ing workflow we developed to process cosmological data
sets from the MWA. The workflow supports high through-
put parallelized processing of many observations. It is ef-
ficient, economical, and relatively simple to operate and
train others to use. Since its development, we have trained
five new users on the workflow. It is currently heavily used
by three graduate students at the University of Washing-
ton.

Developing this workflow consisted of two parts. First,
we created an AMI for configuring EC2 instances to run
our software pipeline. Next, we developed a auto-scaling
cluster architecture.

4.1. Developing the AMI

We chose to store our instance configuration as an AMI.
This has the advantage of being simple to create and use
but is less flexible than other approaches because it can
operate only on AWS instances. An extension of this work
would be to use a lightweight and portable container such
as a Docker container12 instead of an AMI. Containers
would offer better stability across operating systems and
allow for porting beyond AWS.

We configured an Ubuntu AMI to run our analysis soft-
ware and to be compatible with ParallelCluster, our clus-
ter management tool (see §4.2). We installed IDL with an
appropriate licensing file and downloaded the IDL-based
FHD and εPPSILON software packages from GitHub. We
also installed Miniconda Python distribution and pyuv-
data13, a Python-based software package for interfacing
with interferometric data sets. These are not required for
our primary data analysis but expanded the usability of
the AMI.

We used an inexpensive (m4.large) instance for soft-
ware installation and path configuration. To test and de-
bug our installation, we saved the AMI and used it to for-
mat a larger instance that allowed us to process a single
test observation.

11Since this analysis, we have transitioned to using the r5 class of
instances. r5.2xlarge instances enable the style of processing depicted
in Figure 1 for an on-demand price of $0.532 per instance-hour as
compared to $0.768 for m5.4xlarge instances. Users should regularly
evaluate the available instance types to ensure that they choose most
economical option.

12https://www.docker.com
13https://github.com/RadioAstronomySoftwareGroup/pyuvdata

AMIs are stored in EC2 and can be copied between
AWS accounts or downloaded. This enabled us to effi-
ciently migrate between accounts without having to re-
configure the AMI.

We created a single AMI to serve most of the com-
puting needs of our users. This AMI was adopted and fur-
ther customized by different users within the collaboration.
Those who made substantial changes saved their changes
as additional AMIs. For example, one user, Michael Wilen-
sky, adapted the workflow for running SSINS14, a Radio
Frequency Interference (RFI) excision algorithm [26]. He
produced and saved a new AMI that includes the SSINS
installation.

4.2. Cluster Management

In establishing our cloud-based high-performance com-
puting (HPC) infrastructure, we sought tools that would
provide the following elements:

1. A cluster interface such as a master instance equipped
with a scheduler for submitting jobs.

2. A compute fleet for executing jobs, ideally one that
is fully scalable to meet the needs of the queue while
immediately terminating idle instances.

3. A shared file system or similar mechanism for com-
municating between the master and compute instances.

We use the ParallelCluster open-source cluster manage-
ment tool,15 which natively provides this functionality.
ParallelCluster is developed by AWS and is open-source.
It replaces the now-deprecated CFNCluster (we originally
used CFNCluster and migrated to ParallelCluster after the
latter’s release).

ParallelCluster leverages the AWS CloudFormation and
Auto Scaling Groups tools to create scalable high-performance
computing (HPC) clusters. It supports scheduling soft-
ware that is commonly used with academic HPC clusters.
When we initially developed the cloud workflow, Parallel-
Cluster supported four schedulers: Slurm, SGE, Torque,
and a proprietary scheduler called AWS Batch. Our group
had primarily used SGE on academic computing clusters,
so we chose to retain that scheduler for our cloud-based
processing. This facilitated our transition to the cloud by
limited the amount of new code development required.

In May 2020, AWS announced that future releases of
ParallelCluster will not support SGE or Torque schedulers
on the basis that those open-source projects are not ac-
tively maintained.16. In response, we plan to migrate our
cloud workflow to Slurm.17

ParallelCluster is launched from a local machine or
dedicated instance. It produces an auto-scaling cloud clus-
ter that is highly customizable with configurable keywords.

14https://github.com/mwilensky768/SSINS
15https://github.com/aws/aws-parallelcluster
16https://github.com/aws/aws-parallelcluster/wiki/

Deprecation-of-SGE-and-Torque-in-ParallelCluster
17https://github.com/EoRImaging/pipeline scripts/issues/15
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These keywords specify, among other things: the operating
system (we use Ubuntu 16.04, the latest Ubuntu operating
system release supported by ParallelCluster); the instance
type; the scheduling software (SGE in our case); the vol-
ume sizes for each the master and compute instances; the
maximum number of compute instances in the cluster; the
AMI (referenced with a unique AMI ID); the VPC; the
instance pricing model (on-demand or spot); and, for spot
instances, the maximum spot price. We also configure
ParallelCluster with user tags, which are applied to all re-
sources in the cluster and can be used to calculate the costs
incurred by each user.

4.3. The Cluster Workflow

Under our workflow, users launch their own Parallel-
Cluster cloud cluster with customized configuration set-
tings. The users interact with the master instance with
SSH. Software is installed on shared volumes, so code changes
made on the master instance are applied across the cluster.

Users submit jobs to the SGE queue either individu-
ally (e.g. for a test of a single observation) or through a
shell wrapper (e.g. for a processing run of many observa-
tions). The ParallelCluster software monitors the queue,
assigns jobs to compute instances, and adjusts the size of
the compute fleet up to the user-defined maximum queue
size. Jobs consist of a top-level shell wrapper that down-
loads raw data from S3, runs the IDL scripts for data pro-
cessing, and uploads the data products and output logs to
S3. Background processes back up data products to S3
every 30 minutes in case of an unexpected instance termi-
nation. They also monitor spot instance termination no-
tices, which go into effect two minutes before termination,
to ensure that data products and output logs are not lost
when spot instances are terminated from over-demand. All
wrappers are available open-source.18 See Figure 2 for a
graphical representation of this workflow.

5. Working with the Spot Market

The AWS spot market allows users to trade reliabil-
ity for cost savings: EC2 instances can be purchased at
steeply reduced cost if the user can tolerate some probabil-
ity of unexpected instance termination. There is extensive
literature exploring the potential savings from using spot
instances [27, 9, 11, 16, 24, 2, 19, 6, 12, 5].

Spot market performance is highly variable and dif-
ficult to predict [9, 2]. Since 2018, when AWS decou-
pled spot pricing and instance termination behavior, users
cannot use spot instance pricing history to estimate ter-
mination rates [13]. The lack of transparency and high
volatility of the spot market imposes barriers to evalu-
ating its effectiveness in mitigating computational costs.
Low spot termination rates can deliver exceptional cost
savings while only marginally increasing total processing

18https://github.com/EoRImaging/pipeline scripts

Figure 2: Schematic of the data processing workflow with virtual
supercomputing clusters on AWS. Users interact with the Master
instance, which starts, stops, and assigns jobs to the Compute in-
stances. Both the Master and Compute instances are modeled off the
AMI, which stores the instance configuration and software installa-
tions. Master instances are on-demand; compute instances may be
on-demand or spot. Raw data and data products are stored in S3
buckets.

time, while high spot termination rates lead to much longer
processing turnaround times with little to no cost savings.

As an illustration of the spot market’s volatility, we
discuss a case study of two large data processing runs. In
early February 2020, we experienced relatively good spot
market performance during processing of a set of 103 ob-
servations. The data were processed in the full polarization
and deconvolution mode described in §3. 91 of the 103 ob-
servations were processed to completion in the inital run;
12 were spot terminated midway through processing. To
complete the processing run, we resubmitted the 12 spot
terminated jobs. All 12 jobs successfully ran to comple-
tion. The run of ∼ 10 compute hours completed in ∼ 24
wall clock hours with an effective termination rate of 10%
per job. From the AWS Cost Explorer tool we estimate
that this processing run cost $461. Later that month we
discovered an error in the normalization of the images used
in the deconvolution step of FHD’s processing. We doc-
umented the bug in a GitHub issue,19 resolved it with a
pull request,20 and initiated data reprocessing.

This time, spot instance terminations affected 37 of
the 9921 observations processed. Upon resubmitting those
jobs, only half ran to completion. 18 of the 37 jobs were
spot terminated. We resubmitted the terminated jobs a
second time and 13 of the 18 jobs were terminated. Next,
7 of the 13 jobs were terminated. Then, 1 of the 7 jobs
was terminated. We resubmitted that job only to have it
spot terminated again. Finally, we submitted it and got

19https://github.com/EoRImaging/FHD/issues/198
20https://github.com/EoRImaging/FHD/pull/199
21Upon inspection of the 103 jobs in the first round, we found

that four observations had low data quality. We expect that this
stems from poor calibration performance, potentially resulting from
residual RFI contamination that evaded flagging in our data pre-
processing steps. It could also be exacerbated by high ionospheric
activity, as refraction through the ionosphere can contaminate the
images and reduce agreement with the calibration model [15, 10].
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it to run to completion. In all, we submitted jobs 7 times
to achieve successful analysis of the 99 observations. The
effective spot termination rate was 44% per job and the
approximate cost was $823. This time the ∼ 10 compute-
hour run took almost a week to complete. The second
run took roughly four times longer than the first at nearly
double the cost. It is clear that spot market performance
has major implications for the cost and time efficiency of
large data processing runs.

Since 2018, the only documentation on spot termina-
tion rates provided by AWS is the Instance Advisor tool,22

which lists coarse “frequency of interruption” ranges from
“ < 5%” to “> 20%.” These metrics can be useful for mak-
ing rough comparisons between difference instances types
(and it is interesting to note that they are not correlated
with spot prices — see Figure 3). However, they are wholly
inadequate for predicting spot market performance during
our processing runs for three key reasons. First, the In-
stance Advisor metric ranges are too coarse. Below 20%,
the metric bins span 5%. However, the maximum met-
ric category is “> 20%,” including values of up to 100%.
Next, the Instance Advisor metric does not capture time
variations in spot termination rates. We have found that
spot performance is highly variable over timescales of days
or weeks, and this is not captured by the Instance Advisor
tool.

Finally, the units of the Instance Advisor metric are
not well-defined. According to AWS, the Instance Advisor
metric “represents the rate at which Spot has reclaimed
capacity during the trailing month.” However, we expect
(and observe in practice) that longer-running jobs have a
greater probability of termination than shorter jobs (Fig-
ure 4). This begs the question, what is the characteristic
runtime for jobs contributing to the Instance Advisor met-
ric? Without this additional information, we cannot know
if our jobs are representative of those terminated at the
rate given by the Instance Advisor. There is no clear way
to map the Instance Advisor metric to the expected ter-
mination rate for our data processing jobs.

Noting the inadequacy of the Instance Advisor met-
ric for meaningfully predicting spot market behavior, we
turn to a simplified Monte Carlo simulation. The simula-
tion explores the relationships between spot termination
rates, cost, total processing time, and the time between
save points in the analysis pipeline.

We simulate a processing run with 100 jobs that com-
plete in 633 minutes and run on a virtual cluster with the
capacity to run all 100 jobs in parallel. We further al-
low that each job takes 2 minutes to start and stop; this
can account for the time spent copying data from S3 and
uploading pipeline outputs. This simulation has 1-minute
time resolution. We explore a variable number of equally-
spaced checkpoints throughout the jobs that represent sav-
ing the full job state. The simulation assumes a constant

22https://aws.amazon.com/ec2/spot/instance-advisor/

Figure 3: Like fine wines, instance pricing is not indicative of quality.
Here we plot the spot market price for the m5.4xlarge instances ver-
sus the AWS Instance Advisor “frequency of interruption” metric.
This metric is reported as range, and we plot the lower bound. Note
that the highest bin, 20%, is a lower bound including all fractions
up to 100%. Data captured on Aug 27, 2020 from AWS Instance
Advisor.

Figure 4: The AWS Instance Advisor metric has an ill-defined rela-
tionship to the probability that a particular job will be terminated.
If we assume that spot termination rates (in % per hour) are con-
stant over job duration, the total termination probability follows an
exponential law. We therefore see that the spot termination rates’
correspondence to a job’s termination probability is highly depen-
dent on the job’s duration. The vertical dashed line in this plot
marks the 633-minute runtime of our job. The shaded grey region
spans the observed termination rates from two large processing runs
in February 2020. Their intersection indicates a range of underlying
hourly termination rates between .7% and 9%/hour.

6



spot termination probability over the timescale of the run.
In practice we observe variable spot termination rates, and
job terminations are a stochastic process subject to uncer-
tain measurement. However, the approximation that the
termination probability is constant for the duration of a
run is a useful simplifying assumption, and more data are
needed to justify a more complex model. We explore rates
of 0-15% termination probability per hour. On the upper
end of this range, a termination rate of 15% termination
probability per hour corresponds to a 82% probability that
a single 633-minute job will be spot terminated (see Figure
4).

In Figure 5 we examine the cost associated with pro-
cessing 100 jobs. Higher spot termination rates lead to
higher overall costs due to the extra runtime required to
re-run spot-terminated jobs. For high spot termination
rates, the total cost could even exceed the on-demand cost.
Frequent checkpointing mitigates rerun costs by allowing
restarted jobs to commence from an intermediate point.

We also explore the total time required to process the
100 jobs (Figure 6). We simulate that spot terminated jobs
are restarted 4 hours after the completion (or termination)
of the last running job. It is clear that spot terminations
can significantly expand the total processing time. Even
when all jobs can run in parallel, spot terminations necessi-
tate re-runs that can make the total processing time much
longer than a single job’s runtime. For time-sensitive pro-
cessing, it may be infeasible to budget this additional time.
Using spot instances with high spot termination rates can
substantially slow research development, potentially with
minimal cost savings over on-demand instances, as shown
in Figure 5. Again, frequent checkpointing mitigates this
effect by shortening the runtime of resubmitted jobs.

Data processing turnaround time could be improved by
automatically resubmitting terminated jobs. Our simula-
tion’s 4-hour lag before job resubmission is a realistic es-
timate when jobs are manually resubmitted. We could in-
stead capture spot termination notices and use them to au-
tomatically restart jobs. However, such automation makes
assumptions about the cause of spot terminations and runs
the risk of entering a loop. Because the spot market is
highly variable, waiting to resubmit jobs allows the under-
lying reason for termination to abate. We have considered
automated job restarting, potentially calibrated against a
market model, as a future extension to our workflow.

Furthermore, we have seen some evidence that large
processing runs can drive the spot market: spot termina-
tion rates increase when we run many spot instances at
once. Although this is difficult to document, we have had
some success reducing spot terminations by limiting the
maximum cluster size. Instead of running all 100 jobs at
once, we might limit our virtual cluster to only process 50
in parallel. The total processing time would then be at
minimum twice the processing time associated with using
on-demand instances and likely much longer than that due
to spot terminations.

As shown in the simulation presented in Figures 5 and

6, the best antidote to the looming threat of spot termi-
nations is frequent checkpointing [27, 11]. Upon termina-
tion, each job can resume processing at the last checkpoint
achieved. FHD has built-in checkpointing, saving the re-
sults of particularly computationally expensive steps in-
cluding visibility gridding, source modeling, calibration,
and deconvolution. Our cloud workflow includes a paral-
lel process which backs up FHD outputs to S3 every half
hour. Furthermore, we capture spot termination notices
and upload outputs to S3 before instance termination. De-
spite the twice hourly backups, outputs are generated at
junctions between pipeline elements that can take hours
to run. As visualized in Figure 1c, the intervals between
FHD checkpoints range from just over an hour to about
5 hours. Furthermore, FHD uses incomplete checkpoint-
ing. Some intermediate data products are simply too time-
intensive to write in their entirety and must be recalcu-
lated upon restart. In practice, terminations have been
observed to significantly extend FHD runtimes. This ef-
fect could be mitigated by adding more checkpointing to
the FHD pipeline, provided that the time required to write
intermediate data products does not significantly impact
the overall runtime.

We can use our simulation to estimate the spot termi-
nation rate of observed processing runs. If we approximate
FHD checkpointing as two evenly-spaced checkpoints (de-
noted in green in Figures 5 and 6), then we can match the
number of reruns required in practice to those expected
in simulation. Based on this assumption, our processing
run in early February that experienced a 10% job termi-
nation rate and required one rerun had approximately a
0.7% termination probability in any given hour. The next
data processing run, that experienced a 44% job termina-
tion rate and required six reruns to complete, had approx-
imately a 9% termination probability in any given hour.

6. Discussion

Cloud computing has matured within the last decade,
and Infrastructure as a Service (IaaS) has taken root in ev-
eryday technologies. In the lifetime of this project, which
began in 2015, the scope and complexity of offerings has
grown exponentially. Much of this development was driven
by commercial needs; cloud computing tools for academic
research have lagged behind private-sector advancement.
Tools such as AWS’s ParallelCluster have brought much-
needed new investment to academic areas.

Even so, migrating to the cloud poses some challenges
to academic research groups. There can be a steep learn-
ing curve for effectively navigating cloud-based computing
tools. AWS documentation can be thin, and existing doc-
umentation is rarely geared towards academic researchers.
Advising from AWS technical experts at the University of
Washington e-Science Institute proved invaluable to this
work. As documentation expands and cloud computing
becomes a more integral part of researchers’ toolkits, we
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Figure 5: Lost compute time due to spot terminations adds cost.
Here we use a Monte Carlo simulation to calculate the average cost
of a 100-job data processing run. Each job has a total runtime of ∼ 10
hours (633 minutes). We explore variable spot termination rates and
note that very high termination rates can push the total cost beyond
that of on-demand computing. We find that frequent checkpointing
mitigates costs by reducing rerun times. The shaded grey region
spans the approximate spot termination probabilities observed over
two large processing runs in February 2020.

Figure 6: Spot terminations increase processing turnaround times.
Here we simulate processing 100 observations with spot and on-
demand instances. Although the simulated cloud cluster can run
all 100 jobs in parallel, limiting the total processing time to a single
job’s ∼ 10-hour runtime, spot terminations increase the processing
time days or weeks. The shaded grey region in this plot spans the
approximate spot termination probabilities observed over two large
processing runs in February 2020.

expect easier and more efficient development of cloud-based
data processing pipelines.

One predominant challenge to using AWS is the diffi-
culty of predicting costs. Although the AWS Cost Explorer
tool catalogs expenditures, and tagging resources can link
costs with individual users, estimating costs of a planned
processing run can be difficult and time-consuming. Some
costs can be unexpected for users who have not studied
AWS documentation in detail, and there is no mechanism
to cap costs to prevent overruns.

One early instance of unexpected costs occurred during
ingest of ∼200TB of raw data into S3. The data were
downloaded from the MWA archive to an EC2 instance,
converted from raw binary to the FHD-readable uvfits file
format, and uploaded to S3. We realized that instance
storage was imposing a bottleneck and changed the default
EC2 storage type to a solid state disk. This resolved the
bottleneck and increased the data rate substantially. It
also also pushed the IOPS into a non-free tier; in this way
we accumulated some $3,000 of unexpected charges.

Later, we incurred a smaller unexpected charge when
we tried to reduce data product storage costs by moving
a data set to Glacier. Soon after, we determined that we
could safely delete a subset of that data and did so, not
realizing that AWS charges a penalty for early deletion of
Glacier data. Because the data had been stored on Glacier
for less than 90 days, we incurred a fee of several hundred
dollars.

Our largest accidental charge resulted from a secu-
rity breach. AWS manages account access through Access
Keys, which must be securely stored (and ideally changed
frequently) to prevent account breaches. Our account se-
curity was compromised when a user accidentally pub-
lished their Access Key to a public GitHub repository. An
unauthorized user located the key and gained access to the
account, where they initiated hundreds of EC2 instances.
In the hours before we identified the breach and deleted
the compromised Access Key, the account incurred over
$6,000 in fraudulent EC2 charges. Security breaches such
as this one are easily preventable if users adopt good se-
curity practices, but it nonetheless underscores a security
vulnerability unique to cloud computing.

These charges might have been expected by an experi-
enced AWS user; we were new to cloud computing and dis-
covered pitfalls through trial and error. For small research
groups with tight budgets, unexpected cost overruns can
pose an insurmountable barrier to leveraging cloud com-
puting resources.

With policies routinely changing and new services be-
ing added, translation of rules and rates into a cost esti-
mate presents a challenge not unlike a tax filing. The typ-
ical method for discovering actual costs is experimental,
a process requiring capital. For this reason AWS has had
occasion to provide credits to academics for the purposes
of experimentation. Since many academics, will, like us,
find themselves needing to associate a personal credit card
with the AWS account, large unforgiven overages presents
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a risk. In the large errors Amazon did eventually forgive
the charges, however not without first threatening to send
bills on our personal credit to collections.

The spot market offers a simple cost mitigation method,
as spot instances are generally much cheaper than their
on-demand counterparts. However, as we discuss in §5,
high spot termination rates and highly variable spot mar-
ket behavior can substantially extend processing times and
erodes the potential savings. The spot market is best
suited to pipelines with significant checkpointing, short job
runtimes, or both. Time-sensitive processing runs benefit
from using on-demand instances.

The pay-for-use model also represents a paradigm shift
for researchers accustomed to using dedicated academic
clusters. If analyses are expected to be tested in the cloud,
users must be empowered to spend resources on unsuccess-
ful runs. A group must dedicate ample funding to com-
putation for testing and exploration. We found that new
cloud users were consistently hesitant to use pay-for-use
resources and apologetic when unsuccessful runs “wasted”
money. This can slow research progress.

Overall, for our use case, under our unique circum-
stances of location and timing, the benefits of cloud com-
puting with AWS outweighed the challenges. That said,
the time investment required to establish a cloud-based
pipeline and the ongoing costs of funding a pay-for-use
computing model mean that academic research groups should
plan for the unique development and management costs of
migrating their computation to the cloud followed by a
sustained effort to stay on top of changing market rules
and conditions.

7. Conclusion

Using the AWS cloud computing platform, we have
produced an efficient processing workflow for radio cosmol-
ogy data. Our workflow is highly scalable, which permits
faster testing turnaround times than with typical academic
computing clusters. This enables rapid development of the
novel analysis techniques needed to mitigate systematics
in our data processing pipeline.

We note that substituting spot instances for on-demand
instances can reduce computational costs at the expense of
longer processing turnaround times. Our simplified Monte
Carlo simulation, presented in §5, provides a metric for
evaluating this tradeoff. Addition of checkpointing and
automated job resubmission could enable more efficient
spot market utilization, though this development runs the
risk of designing too specifically to the artificial conditions
of the spot market which are likely to continue evolving.
Additionally, we have encountered evidence that large pro-
cessing runs can drive the spot market. Spot market per-
formance is therefore improved by using small clusters.
This limits the cloud clusters’ scalability and eliminates
one of the predominant advantages of cloud computing.

In §6 we discuss some practical challenges associated
with migrating academic research computing to the AWS

cloud. High-performance cloud computing requires skills
that do not always overlap with academic research train-
ing. The pay-for-use model attaches a price tag to trial-
and-error exploration that can be daunting and costly for
academic researchers. We anticipate that, in the coming
years, cloud technologies will become ever-more accessible,
and we hope that case studies like the one presented here
can help researchers use cloud computing more effectively.

As cloud technologies continue to mature, they will
take on an ever more integral role in academic research
computing. In particular, observational cosmology research
necessitates enormous data sets and computationally ex-
pensive processing. The next generation of experiments
boast larger arrays that can achieve improve sensitivity
at the cost of larger data volumes. We show that these
styles of analysis can benefit from cloud computing tech-
nologies, and we expect that next-generation cloud com-
puting tools will further facilitate astronomical data anal-
ysis in the cloud.
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